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Introduction 

Two new and surprising results from lattice gauge calculations
• Lattice spectral function analyses in quenched QCD indicate 

that J/ψ may be stable up to 1.6Tc
• Lattice Q-Q “potential” appears to be very strong between 1 

and 2 Tc

We would like to use the potential model  to check the lattice 
spectral function analyses 

We would like to inquire whether light quarkonia may be stable 
in QGP to provide new insights into  
• the recombination of QGP constituents
• the equation of state of QGP
• the nature of phase transition
• the nature of chemical equilibrium and chemical yields
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Lattice gauge spectral analyses in the quenched 
approximation show that the width of J/ψ remains 
narrow up to T ≤ 1.6 TC

M. Asakawa, T. Hatsuda, and Y. Nakahara, 
Nucl. Phys. A715, 863 (03)

S. Datta, F. Karsch, P. Petreczky, and 
I. Wetzorke,  Phys. Rev. D69,094507(04)

The drastic change of the spectral function 
suggests the occurrence of spontaneous 
dissociation between 1.62 and 1.70Tc.
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Kaczmarek et al. calculated the color-singlet F1 and U1 in 
the quenched approximation [hep-lat/0309121]

F1(r,T) was calculated 
in the Coulomb gauge

Rσ1/2
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(a)

UU1 1 is much deeper and broader than Fis much deeper and broader than F11
and can hold many more bound statesand can hold many more bound states

O. Kaczmarek et al. hep-lat/0506019

U1

F1

T/Tc=1.3

Using U1 as the potential,, Shuryak, Zahed, Brown, 
Lee, and Rho suggested that even light quarkonia
may be bound in quark-gluon plasma

R
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What is the Q-Q potential?
As ansatzes:
1. F1(r,T), the free energy 

(Digal et.al `01, Wong `02, Blaschke `05)

2. U1(r,T)=F1(r,T)+TS1(r,T), the internal energy 
(Kaczmarek et al.`02, Shuryak et al `04, Alberico `05)

With theoretical justifications:
3. A linear combination of F1 and U1

(Wong , PRC 72, 034906 ` 05)
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• We need to understand the meaning of U1.  
• We need to understand the meaning of TS1=U1-F1. 
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(b)
T/Tc =1.3

Why such behavior?

? Uand F gauge lattice from 
potential Q-Qextract  To

11

R (fm)

O. Kaczmarek et al. hep-lat/0506019
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Implications of S1(R) increases as R increases

increases?  as increases energy, internalgluon ,

increases?  as increases  gluons, ofnumber ,
:Questions

increases  as increases 
increases  as increases          

.       Therefore,

. so fixed, held are Q and Q But,

               
                              gluons and ,QQ, of system a have We

RU

RN

R(R)S
R(R)S

(R) S(R) S

(R) S

(R) S(R) S(R)S

gluon

gluon

gluon

gluon

QQ

gluonQQ

⇒

⇒

=

=

+=

1

1

1

0



10

Analogous model of Debye screening

• Q (charge +q)  at   -R/2
• Q (charge  –q)  at    R/2
• medium:   e+ (charge +q),   e- (charge –q)
• particles interact with an e1e2/r interaction
We assume e+ and  e- are massless and are fermions.
We also assume local thermal equilibrium
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Total medium entropy, particle number, and Total medium entropy, particle number, and 
internal energy increase (and saturate) as R internal energy increase (and saturate) as R 
increases.increases.
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F1 and U1 fractions depend on T

Boyd et al. (Nucl. Phys. B ’96)

Quenched QCD equation of state

F1 fraction
U1 fraction
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Karsch al. PL B478, 447 (2000)

Full QCD (2 flavors)  equation of state
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Solve for Q-Q bound states
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(1)

T<Tc

T>Tc

C.Y.Wong, PRC65,034902 (`02)

Quenched QCDFull QCD
(2 flavors)

C.Y.Wong, PRC65,034906 (`05)
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Spontaneous dissociation temperatures in 
quenched QCD

U QQ

)1(Heavy
Quarkonium

Spectral 
Analysis Potential

F1

Potential
U1

Potential

J/ψ 1.62-1.70TC

0.7  to 1.1 TC

above 3Tc

1.15-1.54 TC

2.60TC

χc , ψ '

1.40TC1.62TC

unbound 1.18TC

Υ 4.10TC

unbound

3.50 TC

1.19TC 1.10TC

~5.0 TC

χb  1.73TC
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Quenched QCD & Full QCD

• Quenched QCD is inadequate as it neglects the 
effects of dynamical quarks

• Dynamical quarks provide additional screening
• F1 and U1 for full QCD (with 2 flavors) have been 

obtained by Kaczmarek et al. ΄05
• The equation of state for full QCD (with 2 flavors) 

has been obtained by Karsch et al. ΄02.
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Spontaneous dissociation temperatures in 
quenched QCD & full QCD
Heavy

Quarkonium Quenched 
QCD

2-flavor
QCD

1.62TC 1.42TC

unbound

3.30 TC

1.22TC

unbound

4.10TC

1.18TC

Spectral 
Analysis
Quenched 
QCD

J/ψ ~ 1.6 TC

χc , ψ ' below 1.1 TC

Υ

χb  1.15-1.54

U QQ

)1(U QQ

)1(
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Quarkonia in quark-gluon plasma
We can treat the quark mass as a variable and obtain 
the binding energies of a quarkonium as a function 
of the reduced mass μred and temperature T.

Stability represented by ‘quark drip lines’

• In the ( T,  quark reduced mass μred )  space, 
the quark drip line is the line below which a 
quarkonium is unbound.

• There are  1s drip line, and 1p drip line,  etc,…
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Quark drip lines in quark-gluon plasma

Unbound Region



30

Use quark drip lines to determine the 
stability of  light quarkonia

• Because of the strong interaction, light quarks 
become quasiparticles and they acquire masses 

• These masses can be estimated by studying the 
equation of state (Levai et al. `98, Szabo et al.`02, 
Iavanov et al.`05).  

• They found that the quasi-particle masses of u, d, 
and s quarks are 

mq~ 0.3-0.4 GeV for    Tc<T<2Tc.
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Light quark quarkonia

Szabo et al. JHEP 0306, 008 (`03)
Results from Levai et al `98   
and Ivanov et al `05 are similar.

For light quarks with For light quarks with 
a mass of 300a mass of 300--400 400 
MeVMeV, the quark drip , the quark drip 
line shows that line shows that 
quarkoniaquarkonia with light with light 
quarks can be stable quarks can be stable 
up to 1.06Tc.up to 1.06Tc.
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• The potential model is consistent with the spectral function analysis, if the Q-
Q potential is a linear combination of F1 and U1,with coefficients that depend 
on the equation of state.

• The effects of the dynamical quarks modify J/ψ stability only slightly.  In 
quenched QCD,. J/ψ dissociates spontaneously at 1.62 Tc. In full QCD with  2 
flavors, J/ψ dissociates spontaneously at 1.42 Tc ..

• Light quarkonium states may be stable up to ~1.06 Tc.
The stability of these light quarkonia near Tc provides support to the 
recombination model at temperatures just above Tc. 
Approach to chemical equilibration may start at the end of the QGP phase 
before the phase transition.

Conclusions


	Heavy Quarkonium Potentials and Bound States in Quark Gluon Plasma  
	Introduction 
	What is the Q-Q potential? 
	Implications of S1(R) increases as R increases
	Analogous model of Debye screening
	F1 and U1 fractions depend on T
	Solve for Q-Q bound states
	Spontaneous dissociation temperatures in quenched QCD
	Quenched QCD & Full QCD 
	Spontaneous dissociation temperatures in quenched QCD & full QCD
	Quarkonia in quark-gluon plasma
	Quark drip lines in quark-gluon plasma
	Use quark drip lines to determine the stability of  light quarkonia
	Light quark quarkonia

